LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – STATISTICS

THIRD SEMESTER - NOVEMBER 2009

ST 3811 - MULTIVARIATE ANALYSIS

Date & Time: 03/11/2009 / 9:00 - 12:00 Dept. No.

Answer all the questions.

- 1. Write the characteristic function of bivariate normal distribution.
- 2. Explain the use of partial and multiple correlation coefficients. (a)

3. If
$$X' = (X_1, X_2) \sim N_2 \left\{ \begin{pmatrix} 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$
 then obtain the density of the marginal distribution of X_1

PART – A

- 4. Define Hotelling's T^2 statistics.
- 5. Define Fisher's Z-transformation
- 6. Write a short on discriminant analysis.
- 7. Explain the concept of outliers in multivariate data analysis.
- 8. Outline single linkage procedure.
- 9. Distinguish between principal component analysis and factor analysis.
- 10. Explain Q-Q plots.

PART B

Answer any FIVE questions.

- 11. Obtain the maximum likelihood estimator Σ of p-variate normal distribution.
- 12. Let X₁, X₂,..., X_n be independent N(0, σ^2) random variables. Show that X AX is χ^2 if A is idempotent, where X=(X₁,X₂,...,X_n)'.
- 13. Let the correlation matrix be given by

$$\mathbf{R} = \begin{bmatrix} 1 & \rho & \rho \\ \rho & 1 & \rho \\ \rho & \rho & 1 \end{bmatrix} , \quad \rho > 0.$$

Obtain the principal components.

14. Let $(X_i, Y_i)'$, i = 1, 2, 3 be independently distributed each according to bivariate normal with mean vector and covariance matrix as given below. Find the joint distribution of six variables. Also find the joint distribution of \overline{x} and \overline{y} .

Mean vector:
$$(\mu, \tau)'$$
, covariance matrix: $\begin{pmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix}$

15. Derive the procedure to test the equality of mean vectors of two p-variate normal populations when the dispersion matrices are equal.

(5 X 8 = 40)

Max. : 100 Marks

(10 X 2 = 20)

16. a) What is factor analysis?

b) Define i) Common factor ii) Communality iii) Total variation

- 17. Giving suitable examples explain how factor scores are used in data analysis.
- 18. Explain the principal component (principal factor) method of estimating L in the factor analysis method.

<u>PART C</u>

Answer any TWO questions.

- 19. a) If $X \sim N_p(\mu, \Sigma)$ then prove that $Z = DX \sim N_p(D\mu, D\Sigma D')$ where D is qxp matrix of rank $q \le p$.
 - b) Consider a multivariate normal distribution of X with

μ=	$\begin{pmatrix} 8 \end{pmatrix}$		(7	5	1	4)
	-2	Σ	5	4	8	-6
	0	, <i>Z</i> =	1	8	3	7
	(3)		4	-6	7	2)

Find i) the conditional distribution of $(X_1, X_4) / (X_2, X_3)$.

ii) σ_{33.42}

(10 + 10)

(2 X 20 = 40)

- 20.a) What are principal components?. Outline the procedure to extract principal components from a given correlation matrix.
 - b) What is the difference between classification problem into two classes and testing problem?. (14+6)
- 21. a) Explain in detail T^2 -Statistic with an illustration.
 - b) Distinguish between classification and discrimination with an illustration. (12+8)
- 22. a) Giving a suitable example describe how objects are grouped by complete linkage method.
 - b) Discuss the effect of an orthogonal transformation in factor analysis method in detail.

(8+12)
